Circular polarization has alleviated this problem, allowing viewers to tilt their heads slightly (although any offset between the eye plane and the original camera plane will still interfere with the perception of depth).The viewer wears low-cost eyeglasses which contain a pair of circular polarizers mounted of opposite handedness and the two projectors have similar filters on them.
Linear polarization schemes has been popular since the 1950s. To present a stereoscopic motion picture, two images are projected superimposed onto the same screen through orthogonal polarizing filters. The use of linear polarization meant that a level head was required for any sort of comfortable viewing; any effort to tilt the head sideways would result in the polarization failing, ghosting, and both eyes seeing both images.
Polarization 3D system requires a significant increase in expense compared to analygraph system. The polarized glasses cost more than simple color filters, you normally need two synced projectors for playback and the projection screen must be such that it does not disturb polarization. It is best to use a silver screen so that polarization is preserved.
Nowadays the preferred passive method to show 3D movies is to use polarized lenses because they allow color viewing. In this system Two synchronized projectors project two respective views onto the screen, each with a different polarization. The glasses allow only one of the images into each eye because they contain lenses with different polarization.
There are some variations of analygraph system that can give you better color reproduction than the classical systems give.
If you have suitable analygraph glasses you got from somewhere, the easiest way to get 3D content from them is Youtube 3D. The 3D videos on Youtube are tagged with with yt3d:enable=true to enable the pulldown menu of 3D-viewing options that include several different analygraph viewing glasses variations.
Anaglyph images have seen a recent resurgence due to the presentation of images and video on the Internet, Blu-ray Discs, CDs, and even in print. Low cost paper frames or plastic-framed glasses hold accurate color filters. The current norm is red and cyan, with red being used for the left channel.
The viewer wears low-cost eyeglasses which also contain a pair of color filters. The filters on the glasses allow only one image to enter each eye, and your brain does the rest. Anaglyph images were the earliest widely used method of presenting theatrical 3-D, and the red/green or red/blue system was used in many older 3-D movies. The biggest downside of the analygraph system is that you cannot really have a color movie with this technique and looking the analygraph 3D is somewhat annoyging because different colors are seen by different eyes.
To present a 3D movie with help of analygraph glasses, two images are projected superimposed onto the same screen through color filtering system. Images are made up of two color layers, one for each eye. Anaglyph 3-D films can be printed on one line of normal film and played back with normal movie projector setup.
The mode of 3D presentation you are most familiar with are the paper glasses with red and blue lenses. Anaglyph images are used to provide a stereoscopic 3D effect, when viewed with glasses where the two lenses are different (usually chromatically opposite) colors, such as red and cyan.
Passive 3D glasses are any 3D glasses that don't require a power source to view 3D content. The two major types of passive glasses are anaglyph and polarized 3D glasses. The benefit of passive technology is that passive 3D glasses can be very inexpensive. The downside of passive technology is some loss in picture quality compared to active glasses.
There are different techniques how different 3D glasses work. The same principles that are used for 3D movies are also used for 3D TV and 3D computer monitors. There are two main techniques classes for 3D glasses: passive and active.
3D glasses can make the movie or television show you're watching look like a 3-D scene that's happening right in front of you. If you want to see a 3D image in a 2D plane (on your HDTV or movie theater screen), you need a way to show your eyes slightly different images. Usually easiest way to do this is to use 3D glasses. The idea to use 3D glasses is that you can have only one display, but you can get two different images from that to different eyes. The screen displays two images (either at the same time or sequentially), and the glasses filter what you see in such way that one of the images enter the left eye and the other enter the right eye.
Two separate pictures have been used also on some virtual reality data glasses or helmets with two displays. Just feed the images for different eyes to those different displays, and you get 3D view. You can generate the 3D material with two cameras, two video cameras or with computer 3D graphics techniques.
There are many applications where binocular vision can be used to make 3D view. You can use two normal cameras and two photographs to generate 3D view, just make sure that viewing conditions are such that one eye sees only one picture.
Glasses-free will be the future of 3D technology, but for many years to come 3D glasses will be the mainstream way to view 3D because limitations of glass-free 3D technologies (usually require a specific viewing point to see the 3D image properly). 3D can offer some amazing results, but has been plagued with various problems (each different 3D technology has their own limitations).
In order to see things in 3D each eye must see a slightly different picture. This is done in the real world by your eyes being spaced apart so each eye has its own slightly different view. Since your eyes are about five to seven centimeters (two to three inches) apart, they see the same view from slightly different angles. The brain then puts the two pictures together to form one 3D image that has depth to it. This is called binocular vision. When you want to produce 3D pictures/movies/TV you need to first shoot those two pictures like your eye sees them and then present them to your eyes.
Nowadays it is hard to hide from three-dimensional (3D) display technology. 3D is is being pushed by display and film makers. Mainstream TV, PC monitor, smartphone and games console makers have been jumping on the 3D bandwagon with the home to make money with it.
3D glasses and other 3D display devices
3D glasses and other 3D display devices
Комментариев нет:
Отправить комментарий